Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Objective Driveability Development of Motorcycles with AVL-DRIVE

2014-11-11
2014-32-0020
Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also known as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc.). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

2019-11-21
2019-28-2504
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas after treatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost- efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented test procedures. The focus will be on solutions which have potential for the Indian market, i.e. solutions which can be implemented with moderate application effort for currently available compact and medium size cars.
Technical Paper

About Describing the Knocking Combustion in Gasoline and Gas Engines by CFD Methods

2015-09-01
2015-01-1911
Spark ignited engines are today operated more and more often under high load conditions, where one reason can be identified in the necessity of increasing the efficiency and hence reducing fuel consumption and specific CO2 emissions. Since the gasoline engine operation is inherently limited by knocking at high loads, strategies must be identified, which allow reliable identification and simulation of the appearance of this undesirable type of combustion. A new numerical model for the description of those kinds of pre-flame reactions in a CFD framework is discussed in this paper. Despite emphasis is put here on the auto-ignition effects, it will also be explained that the model is capable of supporting the engine development process in all combustion and emission related aspects.
Journal Article

Blowdown Interference on a V8 Twin-Turbocharged Engine

2011-04-12
2011-01-0337
The exhaust blowdown pulse from each cylinder of a multi-cylinder engine propagates through the exhaust manifold and can affect the in-cylinder pressure of other cylinders which have open exhaust valves. Depending on the firing interval between cylinders connected to the same exhaust manifold, this blowdown interference can affect the exhaust stroke pumping work and the exhaust pressure during overlap, which in turn affects the residual fraction in those cylinders. These blowdown interference effects are much greater for a turbocharged engine than for one which is naturally aspirated because the volume of the exhaust manifolds is minimized to improve turbocharger transient response and because the turbines restrict the flow out of the manifolds. The uneven firing order (intervals of 90°-180°-270°-180°) on each bank of a 90° V8 engine causes the blowdown interference effects to vary dramatically between cylinders.
Technical Paper

Design of a Laboratory Sampling System for Brake Wear Particle Measurements

2022-09-19
2022-01-1179
Brake wear is one of the dominant sources of traffic-related particulate matter emissions and is associated with various adverse environmental and health hazards. To address this issue, the UNECE mandated the Particle Measurement Program to develop a harmonized methodology for sampling and measuring brake wear particles with a full-flow sampling tunnel on a brake dynamometer. Here we present the design of a novel, fully PMP compliant sampling tunnel. The dimensions and general layout of the tunnel are based on minimization of super-micron particle losses and consideration of space limitations in brake-dynamometer setups as well as the need for efficient utilization of the test facilities (reduced testing times). Numerical calculations suggested that the critical section of the system is the sampling train from the sample probes to the instrumentation inlet/filter holder.
Technical Paper

Characterizing a Real-Driving Brake Emissions Sampling System on a Laboratory Test Bed

2023-11-05
2023-01-1875
Brake wear emissions gained significant relevance with the upcoming Euro7 type approval within the European Union for brake emission measurement on the test bed. While the controlled brake test bed approach provides consistent results, real-driving emission (RDE) measurements are needed to better understand actual emission behavior due to varying vehicle and environmental conditions. The EU has already announced its interest in RDE testing. Here we present the results of an RDE brake wear sampling system with minimal thermal impact, where particles are only sampled from one side of the brake disc, characterized on a laboratory sampling system. The investigations aim to validate symmetric particle release and to confirm that doubling the measured RDE results effectively represents the reference emissions on the test bed.
Technical Paper

Single Cylinder 25kW Range Extender as Alternative to a Rotary Engine Maintaining High Compactness and NVH Performance

2013-10-15
2013-32-9132
Due to the restricted capacity of today's battery systems and therefore limited operating range of electric vehicles (EV), several solutions for recharging the energy storage during driving already have been published and still are the subject of extensive development programs. One example is the Range Extender (RE), which is a combination of an internal combustion engine (ICE) with a generator unit, which serves the purpose of a power back-up in case of a battery with low state of charge (SOC), without any direct connection to the drivetrain. For this kind of RE-application, different boundary conditions are very important. Especially in EVs topics like packaging space and NVH behavior play a main role. To fulfill these important characteristics, AVL has developed a Wankel-RE unit in which the generator is driven directly from the eccentric shaft of the rotary-piston ICE.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

Multiphysics Simulation Supporting Systems Engineering for Fuel Cell Vehicles

2024-01-16
2024-26-0244
Legislative challenges, changing customer needs and the opportunities opened-up by electrification are the major driving forces in today’s automotive industry. Fuel cell vehicles offer the potential for CO2 emission free mobility, especially attractive for heavy duty long-haul range application. The development of key components of fuel cell powered vehicles, namely the fuel cell stack itself as well as the related hydrogen/air supply and thermal management sub-systems, goes hand in hand with various challenges regarding performance, lifetime and safety. The proper layout and sizing of the stack and the related fuel and air supply system components, as well as the suitable dimensioning of the cooling system, are decisive for the overall system efficiency and achievable lifetime.
Technical Paper

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-04-06
2021-01-0328
Eliminating toxic exhaust emissions, amongst them particulate matter (PM), is one of the driving factors behind the increasing use of electrified vehicles. However, it is frequently overseen that PM arise not only from combustion, but from non-exhaust traffic related causes as well; in particular from the vehicle brakes, tires and the road surface. Furthermore, as electrified vehicles weigh more and typically exhibit higher torques at low speeds, their non-exhaust emissions tend to be higher than for comparable conventional vehicles, especially those generated by tires. Fortunately, tire related emissions are directly related to tire wear, so that limiting tire wear can reduce these emissions as well. This can be accomplished by intelligently modulating the vehicle torque profile in real time, to limit the operation in conditions of higher tire wear.
Technical Paper

Method for Root Bending Fatigue Life Prediction in Differential Gears and Validation with Hardware Tests

2024-04-09
2024-01-2249
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test.
Technical Paper

Measuring Brake Wear Particles with a Real-Driving Emissions Sampling System on a Brake Dynamometer

2022-09-19
2022-01-1180
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno.
X